Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thioredoxin, glutaredoxin, and thioredoxin reductase from cultured HeLa cells.

Identifieur interne : 001374 ( Main/Exploration ); précédent : 001373; suivant : 001375

Thioredoxin, glutaredoxin, and thioredoxin reductase from cultured HeLa cells.

Auteurs : M L Tsang ; J A Weatherbee

Source :

RBID : pubmed:6950391

Descripteurs français

English descriptors

Abstract

Thioredoxin and glutaredoxin may be important in regulating cell metabolism by mediating interchanges between sulfhydryl and disulfide groups. Components of the thioredoxin/glutaredoxin system from cultured HeLa cells have been partially purified and characterized by using Escherichia coli adenosine 3'-phosphate 5'-phosphosulfate reductase, a thioredoxin/glutaredoxin-dependent enzyme on the pathway of sulfate reduction, as an assay system. In HeLa cells, a NADPH-thioredoxin reductase and three heat-labile proteins (designated PI, PII, and PIII) that have thioredoxin- or glutaredoxin-like properties are found. Both PI and PIII have molecular masses of approximately 12,000 daltons and are readily reduced by their homologous HeLa thioredoxin reductase. However, only PI can be reduced efficiently by the glutathione system and neither PI nor PIII has inherent glutathione-disulfide oxidoreductase activity. PII has a molecular mass of greater than 30,000 daltons and appears to be associated with a reductase activity. The HeLa NADPH-thioredoxin reductase has been purified to near homogeneity and found to be a 116,000-dalton flavoprotein composed of two 58,000-dalton subunits. The HeLa enzyme has low species and substrate specificity and can reduce HeLa PI and PIII, E. coli thioredoxin and glutaredoxin, and the disulfide bond in 5,5'-dithiobis(2-nitrobenzoic acid). The exact in vivo roles of the HeLa thioredoxin/glutaredoxin system remain to be determined.

DOI: 10.1073/pnas.78.12.7478
PubMed: 6950391
PubMed Central: PMC349291


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thioredoxin, glutaredoxin, and thioredoxin reductase from cultured HeLa cells.</title>
<author>
<name sortKey="Tsang, M L" sort="Tsang, M L" uniqKey="Tsang M" first="M L" last="Tsang">M L Tsang</name>
</author>
<author>
<name sortKey="Weatherbee, J A" sort="Weatherbee, J A" uniqKey="Weatherbee J" first="J A" last="Weatherbee">J A Weatherbee</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1981">1981</date>
<idno type="RBID">pubmed:6950391</idno>
<idno type="pmid">6950391</idno>
<idno type="pmc">PMC349291</idno>
<idno type="doi">10.1073/pnas.78.12.7478</idno>
<idno type="wicri:Area/Main/Corpus">001373</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001373</idno>
<idno type="wicri:Area/Main/Curation">001373</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001373</idno>
<idno type="wicri:Area/Main/Exploration">001373</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thioredoxin, glutaredoxin, and thioredoxin reductase from cultured HeLa cells.</title>
<author>
<name sortKey="Tsang, M L" sort="Tsang, M L" uniqKey="Tsang M" first="M L" last="Tsang">M L Tsang</name>
</author>
<author>
<name sortKey="Weatherbee, J A" sort="Weatherbee, J A" uniqKey="Weatherbee J" first="J A" last="Weatherbee">J A Weatherbee</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="1981" type="published">1981</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (metabolism)</term>
<term>Female (MeSH)</term>
<term>Glutaredoxins (MeSH)</term>
<term>HeLa Cells (enzymology)</term>
<term>Humans (MeSH)</term>
<term>Molecular Weight (MeSH)</term>
<term>NADH, NADPH Oxidoreductases (metabolism)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Proteins (metabolism)</term>
<term>Thioredoxin-Disulfide Reductase (isolation & purification)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
<term>Thioredoxins (isolation & purification)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules HeLa (enzymologie)</term>
<term>Femelle (MeSH)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Masse moléculaire (MeSH)</term>
<term>NADH, NADPH oxidoreductases (métabolisme)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Protéines (métabolisme)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Thioredoxin-disulfide reductase (isolement et purification)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Thiorédoxines (isolement et purification)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>NADH, NADPH Oxidoreductases</term>
<term>Proteins</term>
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Cellules HeLa</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>HeLa Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>NADH, NADPH oxidoreductases</term>
<term>Protéines</term>
<term>Protéines bactériennes</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Female</term>
<term>Glutaredoxins</term>
<term>Humans</term>
<term>Molecular Weight</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Femelle</term>
<term>Glutarédoxines</term>
<term>Humains</term>
<term>Masse moléculaire</term>
<term>Oxidoreductases</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thioredoxin and glutaredoxin may be important in regulating cell metabolism by mediating interchanges between sulfhydryl and disulfide groups. Components of the thioredoxin/glutaredoxin system from cultured HeLa cells have been partially purified and characterized by using Escherichia coli adenosine 3'-phosphate 5'-phosphosulfate reductase, a thioredoxin/glutaredoxin-dependent enzyme on the pathway of sulfate reduction, as an assay system. In HeLa cells, a NADPH-thioredoxin reductase and three heat-labile proteins (designated PI, PII, and PIII) that have thioredoxin- or glutaredoxin-like properties are found. Both PI and PIII have molecular masses of approximately 12,000 daltons and are readily reduced by their homologous HeLa thioredoxin reductase. However, only PI can be reduced efficiently by the glutathione system and neither PI nor PIII has inherent glutathione-disulfide oxidoreductase activity. PII has a molecular mass of greater than 30,000 daltons and appears to be associated with a reductase activity. The HeLa NADPH-thioredoxin reductase has been purified to near homogeneity and found to be a 116,000-dalton flavoprotein composed of two 58,000-dalton subunits. The HeLa enzyme has low species and substrate specificity and can reduce HeLa PI and PIII, E. coli thioredoxin and glutaredoxin, and the disulfide bond in 5,5'-dithiobis(2-nitrobenzoic acid). The exact in vivo roles of the HeLa thioredoxin/glutaredoxin system remain to be determined.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">6950391</PMID>
<DateCompleted>
<Year>1982</Year>
<Month>05</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>78</Volume>
<Issue>12</Issue>
<PubDate>
<Year>1981</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Thioredoxin, glutaredoxin, and thioredoxin reductase from cultured HeLa cells.</ArticleTitle>
<Pagination>
<MedlinePgn>7478-82</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Thioredoxin and glutaredoxin may be important in regulating cell metabolism by mediating interchanges between sulfhydryl and disulfide groups. Components of the thioredoxin/glutaredoxin system from cultured HeLa cells have been partially purified and characterized by using Escherichia coli adenosine 3'-phosphate 5'-phosphosulfate reductase, a thioredoxin/glutaredoxin-dependent enzyme on the pathway of sulfate reduction, as an assay system. In HeLa cells, a NADPH-thioredoxin reductase and three heat-labile proteins (designated PI, PII, and PIII) that have thioredoxin- or glutaredoxin-like properties are found. Both PI and PIII have molecular masses of approximately 12,000 daltons and are readily reduced by their homologous HeLa thioredoxin reductase. However, only PI can be reduced efficiently by the glutathione system and neither PI nor PIII has inherent glutathione-disulfide oxidoreductase activity. PII has a molecular mass of greater than 30,000 daltons and appears to be associated with a reductase activity. The HeLa NADPH-thioredoxin reductase has been purified to near homogeneity and found to be a 116,000-dalton flavoprotein composed of two 58,000-dalton subunits. The HeLa enzyme has low species and substrate specificity and can reduce HeLa PI and PIII, E. coli thioredoxin and glutaredoxin, and the disulfide bond in 5,5'-dithiobis(2-nitrobenzoic acid). The exact in vivo roles of the HeLa thioredoxin/glutaredoxin system remain to be determined.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tsang</LastName>
<ForeName>M L</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weatherbee</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA-28078</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.-</RegistryNumber>
<NameOfSubstance UI="D009247">NADH, NADPH Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009247" MajorTopicYN="N">NADH, NADPH Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="Y">Oxidoreductases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1981</Year>
<Month>12</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1981</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1981</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">6950391</ArticleId>
<ArticleId IdType="pmc">PMC349291</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.78.12.7478</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1967 Mar 10;242(5):852-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5335913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1968 Jul;126(1):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5671059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1970 May 10;245(9):2363-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5442277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1973 Feb 25;248(4):1219-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4405641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1974 Jan 10;249(1):205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4809626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thromb Res. 1974 Jan;4(1):55-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4151431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1975 Jan;64(1):223-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1109232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1976 Mar;125(3):923-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Mar;73(3):780-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">768986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1976 May 17;65(1):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">179817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 Aug;74(2):623-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">962116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1976 Nov 15;70(2):377-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prep Biochem. 1977;7(2):165-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">194234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1977 Jul 10;252(13):4600-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1977 Sep 25;252(18):6367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">330529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1977 Aug 8;77(3):1044-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">332168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Mar 25;253(6):1910-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">344311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Apr;134(1):131-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1978 Jul;78(1):47-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">670297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Oct 25;253(20):7424-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">359548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1979 Jan 15;97(2):201-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Mar 10;254(5):1627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">216700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">372193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3672-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">34620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 May;76(5):2158-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">377293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1979;48:133-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">382982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Sep 25;254(18):9113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">39074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1980 Jun 30;94(4):1337-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6249309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1980 Aug 19;19(17):4116-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7407082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1981 Jun;146(3):1059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7016827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1964 Oct;239:3445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14245401</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Tsang, M L" sort="Tsang, M L" uniqKey="Tsang M" first="M L" last="Tsang">M L Tsang</name>
<name sortKey="Weatherbee, J A" sort="Weatherbee, J A" uniqKey="Weatherbee J" first="J A" last="Weatherbee">J A Weatherbee</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001374 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001374 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:6950391
   |texte=   Thioredoxin, glutaredoxin, and thioredoxin reductase from cultured HeLa cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:6950391" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020